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The functional form of acceptance probabilities in Monte Carlo algorithms bears a 
resemblance to the distance functions which are specifically defined to be bracketed by 
the unit interval. This observation led us to seek the average distance between any two 
points on the unit interval and this by analogy resulted in a suggestion of an upper and a 
lower bound of 1/2 and 1/3, respectively, for the acceptance ratio or the average accep- 
tance probability in Monte Carlo computer simulations. 

Mon te  Carlo computer  simulations are now routinely used to probe  structural 
and thermodynamic  properties of  chemical and biochemical systems [1]. 
Investigations on the methodological  front however,  have not  kept  pace with the 
popular i ty  that  this simulation technique enjoys. One such area is the acceptance 
ratios. Each Mon te  Carlo simulation requires that the acceptance ratio be moni-  
tored and a decision be made whether a given ratio is satisfactory or not. The num- 
ber of  particles to be moved  and the size of  the displacement are dictated by the 
acceptance ratio. Typically, a value of  0.5 is considered to be optimal [1]. In the fol- 
lowing, we seek an analogy between the acceptance probabilit ies and distances on 
the unit interval which quite interestingly leads to a lower and an upper  bound  for  
the acceptance ratio. 

It  is well known [2] that  if a functionf(xi ,  xj) is a metric on a set X with xi, xj 
belonging to X, then 

min{1,f(xi ,  xj)} (1) 

is also a metric on X and so is 

f ( x i ,  xj)/[1 + f (x i ,  xj)]. (2) 

The above two metrical forms (1) and (2) may  be interpreted as ensuring bounded-  
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ness for the functionf(xi, xj). The two metrics in expressions (1) and (2) lie in the 
unit interval (0, 1). 

The parallel between Metropolis choice [1,3] for the acceptance probability aij 
defined as 

s 0. = min[1, Pj/Pi] (3) 

and expression (1) cannot be missed, f(xi, xj) is identified with (Pj/Pi), where Pi 
and Pj are the Boltzmann probabilities for states i andj .  oqj as defined by eq. (3) is 
confined to the unit interval. In the same vein, 

c~ij= Pj/[Pi+ Pj], (4) 

which is analogous to expression (2), is nothing but Barker's choice [4] for the 
acceptance probability. 

Pursuing the idea that c~ 0. has the semblance of a distance function and further 
noting that c~,j is restricted to the unit interval, it is interesting to seek the average 
distance between any two points on the unit interval when infinite number of such 
points are generated. The motivation behind such an investigation being the exis- 
tence of a proposed correlation between the optimal ensemble average of accep- 
tance probability (~ij) in a Monte Carlo simulation and the average distance 
between any two points (d) on the unit interval. The ensemble average of the accep- 
tance probability and the acceptance ratio are used interchangeably here as both 
carry the same information [ 1,5]. 

Consider the unit interval as a discrete lattice consisting of n segments and 
(n + 1) equally spaced points including 0 and 1. This lattice involves (n + 1)2 pairs 
of points and (n + 1)2 distances. This includes the distance from any arbitrary point 
to itself. The average distance (d) then is obtained as 

_ 2 1 
(d) ( n + l ) 2 n [ n . l + ( n - 1 ) . 2 + ( n - 2 ) . 3 + . . . + 2 . ( n - 1 ) + l . n ] ,  

_ 2 n 
(d) n(n + 1) 2 Z [ ( n  + 1 - r)-  r] 1 (n + 2) 

r = l  3 ( n +  1)" (5) 

Ifn = 1, i.e. when there are just two points (or two states), namely 0 and 1, the aver- 
age distance from eq. (5) is 

(d) = (1/3){(1 +2) / (1  + 1)} = 0 . 5 .  

Traditionally, it is this value of 0.5 which has been adopted for the acceptance ratio 
in Monte Carlo simulations [1,5]. As n ---, oe, (d) converges to a value of(1 / 3). This 
was quite unanticipated. Average distance is thus seen to span the interval (1/2, 1 / 
3), establishing, by analogy, an upper and a lower bound for the acceptance ratio. 

A random lattice as opposed to a discrete lattice described above is probably 
more suitable to discuss the average distances in the context of acceptance ratios. 
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This can be accomplished via a numerical experiment. Several points are generated 
randomly on the unit interval using a computer. The computed average distance 
between any two points is 0.330 with 10 points, 0.348 with 102 points, 0.326 with 
103 points, 0.333 with 104 points, 0.334 with 105 points, and 0.333 with 106 points. 
It may be recalled that 106 points on the unit interval translate to 1012 distances and 
it is the average of all these distances which is computed. It is once again seen that as 
the number of points increases, the average distance converges to a value of (1 /3). 
Thus an acceptance ratio of (1/3) appears to correspond to the realization of an 
infinite number of states during the course of a Monte Carlo simulation. 

Lastly, a rigorous mathematical approach would involve a demonstration that 
e i  and Pj are probability measures, that Pj/Pi also defines a measure, that transi- 
tion probabilities can be considered as metrics and that each satisfactory prescrip- 
tion for the acceptance probability generates a topology consistent with Boltzmann 
distribution, etc. Much of this, while being useful, is not likely to alter our conclu- 
sions regarding the upper and lower bounds of the acceptance ratios. It is hoped 
that the information provided here will stimulate further work on transition prob- 
abilities for more efficient simulations. 
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